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NO~MENCLATURE 

acceleration of gravity; 
Heaviside function; 
thermal conductivity; 
width of slot; 
pressure; 
Prandtl number; 
Rayleigh number; 
reduced stream function variable; 
temperature; 
time; 
heat-up time; 
horizontal and vertical velocity components; 
reduced temperature variable; 
horizontal and vertical coordinates; 
thermal expansion coefficient; 
temperature difference in basic state; 
small parameter; 
density; 
stretched stream function variable, Ra1’4S; 
stretched time variable. Ra- ‘%; 
boundary-layer coordinate Ra”‘(:+x)/J2; 
stream function. 

basic state, lowest order. 

Superscript 

B. boundary layer; 
I. inviscid interior. 

THE FORMATION of natural convection boundary layers is 
revealed by an exact solution the the linearized equations 
governing the motion of a fluid bounded by an impulsively 
heated infinite vertical plate. This result provides the 
motivation for a second calculation which describes the 
convection process by which a stratified fluid in a vertical 
slot is heated as a result of an impulsive change in the 
stratification of the two boundary plates. The result is an 
asymptotic solution for large Rayleigh and arbitrary Prandtl 
number. 

SINGLE VERTICAL PLATE 

Consider first a compressible Newtonian fluid confined to 
x > 0 by an infinite plate at x = 0. Given initially that the 
plate has a temperature that varies linearly along the plate 
and that the fluid is in static equilibrium with the plate, the 
problem is to find the flow field that results from impulsively 
changing the plate stratification by a small amount. 

Let z be the coordinate measured along the plate such 
that gravity, 9, acts in the negative z-direction and .z = 0 
corresponds to the point about which the initial plate 
temperature profile is impulsively rotated. Further, let L be 
a reference length such that the plate temperature is given 
by [1 t~H(r)]dTz/L where E K 1, H(r) is the Heaviside 
function, and AT/L is the stratification of the basic state. 

Introduce the following normalized variables (denoted by 
an asterisk) appropriate to buoyant, weakly-stratified, small- 
disturbance flow: 

l/2 
(1) 

,p*= p 
wogLBoAT’ 

Pressure, density, temperature, velocity, time, and thermal 
expansion coefficient are given by p, p, 7’, V, t and /I 
respectively. The subscript zero denotes references values in 
the basic state of static equilibrium and the prime indicates 
a small perturbation. The Prandtl number Pr = &o/k in 
which the viscosity, p, and thermal conductivity, k, are both 
assumed constant. and Cp is the specific heat at constant 
pressure. 

With these definjtions the governing equations are 
(dropping the asterisk notation) 

Mass ‘u,!~ = 0 

?x (72 
(2) 

neglecting dissipation. Here u and w represent velocities in 
the x and z directions respectively. The Rayleigh number 
Ra = PrgtipofioAT/p2. These equations represent the so- 
called “bousinesq” approximation for temperature driven, 
weakly stratified, small-disturbance flow. The Bousinesq 
approximation assumes that changes in density are im- 
portant only in the buoyant force as it appears in the 
momentum equation. 

The associated initial and boundary conditions are 

t=0: T=t,=w=O (6) 

x = 0: T = H@)z, L1 = w = 0 (7) 

,X+X2: T, w + 0. (8) 
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There is no vertical length scale inherent in the geometry, 
thus the linear vertical spatial dependence that the tempera- 
ture exhibits at the boundary can be assumed to hold 
throughout the fluid, T = zV(u, I). Introduce the stream- 
function + as 

l/j = -;Slu. I). (9) 

The functions S and V then satisfy the following coupled 
pair of linear partial differential equations 

(10) 

These equations are ideally suited for solution by means of 
Laplace transforms. When the Prandtl number is unity, the 
resulting transformed expression can be inverted analytically 
[il. There results 

V = Real[exp(- i”“t)+ Ft(c, t)] (12) 

Ra’?? 
=~Imag[{exp(-i”2~)-erf((it)“2)-F,(~,t)~/i”2] (13) 

where r = Ra’j4x and 

FI.2(& t) = f[exp(i”2~)erfc((it)‘~2 + 3212r”‘)f 
Texp( -i”2~)erfc((it)‘~2-~j(2f*~?))]. (14) 

When Prandtl number is not unity, the transformed ex- 
pressions must be inverted numerically. The contour 
integrals in the complex plane can be reduced to real 
quadratures which are evaluated numerically to give “exact“ 
solutions for the impulsively heated infinite vertical plate. 

Of particular interest is the final steady state where the 
temperature, velocity, and pressure are given by 

T/z = exp( - <) CDS c (15) 

IV/Z = exp( -a sin c (16) 

-(,,‘2fRa’% = 1 -expi-r)tsin~+cos~) (17) 

Ra”‘p = exp( - a sin < (18) 

where < = <II ‘Jti2. These steady state solutions are shown in 
Fig. 1 and reveal that the plate temperature change is 
communicated to the fluid through viscous and thermal 
boundary layers whose thicknesses are of order Ram“‘. 

FIG. 1. Steady state velocity and temperature profiles FIG. 2. Time evolution of temperature profile (Pr = I) 

Within the thin viscous layer the buoyant force is balanced 
by viscous shear stresses and the pressure is constant to 
order Ra-‘!“. Thus. in steady Bow. fluid particles near the 
upper half of the plate arc heated as a direct result of 
conduction and the increased buoyant force causes the fluid 
to rise near the plate with a vertical velocity component of 
order unity forming a boundary layer. Near the lower half 
ot” the plate the fluid particles are cooled. the buoyant force 
decreasesand the iluid settles near the plate. To compellsatc 
for the vertical mass how in the boundary layer, a small 
horizontal mass flux of order Rtr “’ is induced in the 
inviscid core. This is the familiar plugging phenomena of 
stratitied flow and here results directly from a haundary- 
layer-induced suction. 

Examination of the transient solution shows that these 
boundary layers form on a time scale given by the inverse 
of the Brunt-Vaisala frequency (~/~,,dT,:dz)“’ correspond- 
ing to the time it would take a simple pendulum of unit 
length to make a few oscillations in a “stratified-reduced” 
gravity held g/J,, dT”;d;. The boundary-layer formation is 
complicated by viscous d~ffusi[~n and minor os~ilati~)ns due 
to excitation of the natural inviscid frequency. Figure 2 
shows the development of the steady state temperature 
protilc for Prandtl number unity and how the temperature 
profile tends to its steady state form in an oscillatory manner. 

The effect of Prandtl number on the transient solution for 
temperatureis shown in Fig. 3 where the temperature profile 
at a dimensional time equal to twice the inverse Brunt- 
Vaisala frequency is given. This result as well as the details 

oftheanalysisshows that the boundary-layer formation time 
increases as the square root of Prandtl number for large 
Prandti number. 

TWO !‘ERTICAL PLATES-THE HEAT-UP PROBLEM 

Consider next the effect of a second plate at Y = L so that 
the fluid is confined to 0 < .Y < L.. Again. the plates initially 
have a temperature that varies linearly along the plates and 
the fluid is in static equilibrium with the plates. At time 
r = 0, the str~lti~cation of the two plates is iinpLllsive1~ 
increased by a small amount. The problem is to find the 
flowfield that results and to determine the time rcquircd for 
the enclosed Auid to attain the stable state of increased 
stratification- the so-called heat-up time The governing 
equations and boundary conditions remain the same as in 
the carlier case of a single imp~llsively heated plate cxccpt 
that the boundary condition at infinity is replaced by the 
following condition at .u = I. 

Y = I: ‘I’ = H(t):-. i, = LY = 0. 119) 



Shorter communications 1619 

FIG. 3. Effect of Prandtl number on transient temperature 
profile. 

For many problems of interest, the Rayleigh number is 
quite large suggesting the use of the methods of singular 
perturbation theory. This proves to be convenient as an 
exact solution of equations (10) and (11) with boundary 
conditions given by equations (6) (7) and (19) by, say, 
Laplace transforms is quite cumbersome and the asymptotic 
solutions for large Rayleigh number do describe the flow 
accurately and simply. 

To motivate the form of the asymptotic solution, the 
nature of the heat-up process shall be briefly described. As 
our earlier analysis shows, the initial impulsive change in 
the boundary stratification produces a thermal layer at each 
plate which then starts to thicken by means of thermal 
diffusion. The increased buoyancy near the wall generates a 
velocity boundary layer and, within a time t of order unity 
corresponding to a dimensional time of the order of the 
inverse BrunttVaisala frequency, a quasi-steady boundary 
layer with thickness of the order of Ru-“~ develops. To 
compensate for the vertical mass flow in the boundary 
layer, a small horizontal mass flux of order Ru~“~ forms in 
the inviscid interior region. Mass conservation then implies 
that this small horizontal inflow into the boundary layers 
can be maintained only through the establishment of an 
equally small vertical interior motion. Since the interior flow 
is practically inviscid, the internal energy (here proportional 
to the temperature) of a fluid element which moves down- 
ward to replace the fluid entering the boundary layer is 
conserved. Thus fluid elements in the interior are convected 
to regions where the temperature was initially less than that 
of the fluid element. This is the convection process by which 
the inviscid interior is heated. As the inviscid interior 
approaches the new state of static equilibrium, the boundary 
layers decay. This happens in a dimensionless time of order 
RLZ”~, a time scale not long enough for the boundary layers 
to thicken appreciably. The small oscillations set up by the 
initial impulse are inconsequential to the heat-up process 
and decay by viscous and thermal diffusion in a dimension- 
less time of order Ra”‘. 

Thus RatI emerges as the time scale of the stream 
function. We therefore introduce “stretched” time r = 
RQ-“~~ and stream function cr = Ra114S variables and seek 
an asymptotic solution for Rayleigh number large and T, V, 
and 0 of order unity. The equations for I/ and u then 
become 

(20) 

(21) 

with boundary conditions 

x=&j: V=l, c$+ (22) 

We now decompose the stream function and temperature 
into interior and boundary-layer conditions 

Cr = cr’+oS 
v= vr+vR (23) 

where u’ and VB are exponentially small away from the 
boundary. 

For x of order unity, the interior solutions for Rayleigh 
number large are, to lowest order (denoted here by the 
subscript zero), 

v,l = f+(r) (24) 

dV,‘b) ., 
uh = -xPr-- dr +fo(d 

in terms of, as yet unknown, functions Vc’ and fi. 
To investigate the boundary layers near the plates we 

introduce a stretched coordinate 5 = RcI”~(:*~)/J~ for the 
left and right boundaries, respectively. The lowest order 
solution for Rayleigh number large and 5 of order unity are 

v: = (I- v;(T)) exp( - 5) cos(<) (26) 

ab = + f1 - v:‘(T)) _ ~ exp( - s)(cos 5 + sin 5) I_ (27) 

for the left and right boundaries, respectively. 
The no-slip boundary condition at the plates (5 = 0) means 

that CT must vanish there. To lowest order, then, (u~fu~) 
must vanish at 5 = 0. Thus, on the left plate, 

Pr d V:(T) (1 -V,(T)) 
y 7 +fo'(T)- ~ = 0 

J2 
(28) 

while on the right plate 

Pr dI/,‘(r) 

2 dr 
+&r(r) + (l- = 0, 

J2 
(29) 

Hence fd must vanish identically and 

Vi = 1 - exp( -(J2)t/Pr) (30) 

where we have made use of the fact that V,‘(O) must vanish. 
Equation (25) then allows determination of 06 as 

~6 = - (J2) exp( - (,/Z)r/Pr). (31) 

Thus we see that the interior is heated uniformly in x by a 
convection process which arises because of boundary-layer 
suction. 

It should be noted that although this boundary-layer 
analysis allows V’ to satisfy the correct initial condition 
(V’ = 0). this is not the case for the stream function cl. Here 
the initial value of CJ’ corresponds to the state of motion 
just after the establishment of the plate boundary layers, 
This is not surprising in that the asymptotic analysis is valid 
only for T of order unity corresponding to 

1 < t < RcI”~ 

i.e. just after the plate boundary layers form. 

(32) 
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From these results we can conclude that the dimensional 
heat-up time (more accurately, the e-folding time) is given by 

(33) 

which is much less than a diffusion time (which scales as 
Ra”‘). From equation (33) one can show that the heat-up 
time for an insulating air gap in a pane of thermal glass is 
of the order of seconds, for the liquid oxygen in a spacecraft 
fuel tank it is of the order of a few hours, for the liquified 
natural gas in typical land-based storage tanks it is of a few 

days. while for the earths mantle, the heat-up time may be 
of the order of IO9 yr. This last figure is very approximate as 
it depends upon the properties of the earth’s mantle which 
are not accurately known. It does suggest. howcvcr. that the 
convection patterns in the earth’s mantle. which are prc- 
sumably responsible for continental drift. may not have yet 
reached steady state. 
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NOMENCLATURE 

h, gap width between concentric cylinders or 
spheres; 

C,, C,, constants, see (2) and (5); 
D. diameter of cylinder or sphere; 
D,, D,, inside and outside diameters respectivelv of 

concentric cylinder or sphere; 
gravitational acceleration; 
component of gravitational acceleration along 
the surface; 
thermal conductivity; 
effective thermal conductivity of fluid in gap 
between concentric cylinders or spheres; 
length of plate in flow direction; 
average Nusseit number based on the relevant 
dimension, s; 
Prandtl number; 
curvilinear distance along surface from 
stagnation point; 
surface temperature: 
fluid temperature far from surface; 
horizontal distance from axis of symmetry to 
point on surface; 

Ra,, Ra,, Rayleigh number based on (T, - Tm) and 
dimension s and r, respectively ; 

/A thermal expansion coefficient; 
A,, A,, laminar and turbulent conduction thickness: 

k, thermal diffusivity of fluid; 
1’. kinematic viscosity of fluid. 

INTRODUCTION 

THERE is a striking similarity between the processes govern- 
ing the growth of a liquid condensate film, and the growth 
of the inner region of a natural convection boundary layer. 
Exploitation of this analogy has enabled the authors to 

obtain a general approximate solution to a broad class of 
free convection problems, predicting heat-transfer rates in 
good agreement with experimental results. The detailed 
development of this method and the comparison of pre- 
dictions and measurements for several problems will appear 
elsewhere [l]. This note is intended to draw the reader’s 
attention to this method, and to summarize the results. 

In the main, the method applies to the problem ol 
assessing the heat transfer from the external surfaces of 
single two-dimensional or axisymmetric bodies immersed in 
an extensive fluid. although enclosure problems are also 
considered in [t]. The method is first developed and tested 
for the case where the flow is laminar over the entire surface 
of the body. It is then extended to the turbulent case. A 
simple criterion is then proposed to predict the extent of 
the surface subjected respectively to laminar and turbulent 
heat transfer. 

LAMINAR HEAT TRANSFER 

The velocity extremum in a free convection lammar 
boundary layer divides the flow into two regions: the inner 
region adjacent to the wall, and the outer region. A central 
premise of the present model is that, in the inner region. 
inertial forces are not important and energy transfer normal 
to the walls is by conduction only. It is also hypothesized 
that the fraction of the boundary layer’s total buoyancy 
carried by the inner region is invariant with s. With these 
assumptions, the rate of growth of the thickness of the inner 
region is found to be completely tixed locally, in a manner 
similar to thegrowth of a condensate film. As a consequence, 
the heat transfer can be calculated directly by integrating 
along the surface. The resultant expression for the heat 
transfer is derived in [l]. Expressed in terms of the local 
conduction thickness (defined as that thickness of stagnant 
fluid offering the same resistance to heat transfer as that 


